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Linear stability of flow in a diverging–converging channel is considered. The flow
may develop under either the fixed mass or the fixed pressure gradient constraint.
Both cases are considered. It is shown that under certain conditions the divergence–
convergence of the channel leads to the formation of a secondary flow in the form of
streamwise vortices. It is argued that the instability is driven by centrifugal effect. The
instability has two modes and conditions leading to their onset have been identified.
These conditions depend on the amplitude and the length of the channel diverging–
converging section and can be expressed in terms of a critical Reynolds number. The
global critical conditions describing the minimum critical Reynolds number required
to create the instability for the specified amplitude of the variations of the channel
opening are also given. It is shown that the flow developed under the fixed mass
constraint is slightly more unstable than the flow developed under the fixed pressure
constraint. This difference increases with an increase of the amplitude of the channel
divergence–convergence.

1. Introduction
It is well known that turning shear layers are subject to an instability that, under

certain conditions, gives rise to a secondary flow in the form of streamwise vortices.
It is also known that the centrifugal force field drives this instability. This instability
has been studied in the case of simple geometries and reference canonical flows
where the curvature of streamlines can be predicted and/or approximated easily.
Rayleigh (1920) studied the inviscid mechanism in the case of flow between rotating
cylinders and was able to determine the necessary stability condition; this condition
is expressed in terms of distribution of circulation. Taylor (1923) considered the full
viscous problem and determined the critical conditions for the onset of the secondary
flow. Dean (1928) analysed similar instability in a curved channel. Görtler (1941)
demonstrated the existence of centrifugal instability in the case of boundary layers
over concave surfaces. Floryan (1986) showed that the instability is active in flows
over concave as well as convex surfaces if the streamwise velocity distribution is non-
monotonic. All of these studies are similar in the sense that wall curvature is (or can
be considered as) constant, permitting description of the critical stability conditions
in terms of a single parameter.

The present work is focused on flows in diverging–converging channels. Variations
of channel geometry force the flow to change direction, i.e. to expand and to contract,
resulting in the creation of a centrifugal force field that may potentially drive the
instability.
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The diverging–converging channels have been studied in the context of search for
better heat transfer augmentation schemes. Such schemes can be divided broadly into
two categories, i.e. methods involving changes in effective thermophysical properties
and methods involving improved mixing (Bergless & Webb 1985). Mixing is defined
here as exchange of mass in the direction normal to the channel wall. Improved
mixing is of special interest in compact heat exchangers operating at low Reynolds
numbers where the flow is laminar and difficult to mix. Improved mixing can be
obtained by forcing laminar–turbulent transition under subcritical conditions or by
using various forms of vortex generators (Fiebig & Chen 1999) (but with a rather
large pressure drag penalty). One class of mixing augmentation methods relies on
hydrodynamic instabilities of separated shear layers (Patera & Mikic 1986). A set of
transverse grooves is created on the channel wall in such a way that flow separates
between the grooves. The flow is then driven with a small oscillatory component that
enters into resonance with separated shear layers.

Centrifugal instability represents an alternative hydrodynamic instability
augmentation method. It creates streamwise vortices without the large drag penalty
associated with the standard vortex generators. Its effective use depends on the
complete understanding of the conditions under which it is strongest. Even when the
flow is marginally stable, the instability may assist the standard vortex generators
in reducing the decay rate of the vortices and thus reducing the required number
of such generators. The instability may occur only if the walls are properly shaped.
Flow separation between channel contractions is undesired as it changes the effective
centrifugal force field.

The existence of streamwise vortices attributed to centrifugal instability in channels
with variable geometry has been confirmed experimentally by Gschwind, Regele &
Kottke (1995) and Nishimura et al. (1990a). This confirmation is only qualitative as
these authors studied channels of geometry different from the one being of interest
here.

Characteristics of two-dimensional flows in diverging–converging channels have
been studied by Nishimura et al. (1984, 1985, 1986, 1990b) and Wang & Vanka
(1995) under flow and geometric conditions, leading to a very large flow separation
in the expanded section of the channel. These authors, as well as Mendes & Sparrow
(1984) in the case of tubes, observed improvement in flow mixing, although it was
not attributed to any well-defined flow phenomenon.

The existing theoretical analyses have been focused on flows over wavy surfaces.
Craik (1982) and Leibovich (1977) considered three-dimensional instability of
shear layers over wavy interfaces giving rise to streamwise vortices in the
context of Langmuir circulation. The analysis was simplified by taking advan-
tage of the small amplitude of the waves and relied on averaging techniques.
The resulting vortices were attributed to the action of centrifugal effect and the
corresponding mechanism is referred to as the CL2 mechanism (Leibovich 1983).
The CL2 mechanism can also operate in a non-centrifugal regime as shown by
Phillips & Wu (1994) in the case of uniform shear between two wavy walls and
by Phillips, Wu & Lumley (1996) in the case of turbulent boundary layers over a
wavy terrain. The necessary conditions for such instability are expressed in terms
of the Craik–Phillips–Shen criterion (see review by Phillips 1998). Experiments of
Gong, Taylor & Dörnbrack (1996) confirmed the existence of this instability in the
case of turbulent boundary layers. Saric & Benmalik (1991) analysed the boundary
layer over a wavy surface and concluded that the centrifugal mechanism was not
important for their flow conditions. Floryan (2002) considered Couette flow in the
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same geometry and identified the conditions necessary for the generation of the
vortices.

The properties of flows in diverging–converging channels are also of interest from
a fundamental point of view, i.e. how the variations in channel geometry affect
the laminar–turbulent transition process. Guzman & Amon (1994, 1996) and Amon,
Guzman & Morel (1996) considered channels with very large expansions and identified
numerous possible responses of the resulting dynamical system. Their analysis was
limited to two dimensions and thus was unable to capture possible formation of
streamwise vortices.

Centrifugal instability is of interest as it may give rise to a bypass transition.
This process involves rapid three-dimensionalization of the flow field, formation
of transverse shear layers with inflection points and rapid growth of secondary
instabilities (Floryan 1991). As a result, centrifugal instability may be used as a
method for improvement of mixing through initiation of subcritical transition.

Presence of channel divergence–convergence may lead to interesting modifications
of properties of turbulent flow. Hudson, Dykhno & Hanratty (1996) carried out
extensive experimental measurements in a flow over a wavy wall and concluded that
the structure of turbulence was fundamentally different in the wall layer and was
related to the properties of separating shear layers. Direct numerical simulations
of Cherukat et al. (1998) confirmed most of these observations. Simulations of De
Angelis, Lombardi & Banerjee (1997) identified turbulent structures that resembled
streamwise vortices. Nakagawa & Hanratty (2001) observed some structures in their
experiments, but have not identified their properties.

The magnitude and distribution of the centrifugal force field in the channel depends
on the shape of the converging and diverging sections. Because of variations of
channel geometry in the axial direction, this field requires a minimum of two para-
meters for its characterization. The first parameter is the difference between the widest
and the narrowest channel openings and the second is the distance between the
corresponding points on the channel axis. It is convenient for the purposes of this
analysis to define a reference diverging–converging channel where the shape of the
walls is described by simple sine functions. The change in the channel opening is
then expressed in terms of the amplitude of these functions, and the distance between
the narrowest and the widest sections is expressed in terms of the wavelength. As
the centrifugal force field changes from stabilizing to destabilizing along the channel
axis, the critical instability conditions depend on whether the driving mechanism in
the area where the force field is destabilizing (converging section) is strong enough
to drive the secondary motion in the area where this field is stabilizing (diverging
section).

It is expected that the flow may become unstable for various combinations of
the two parameters discussed above, with the value of the critical Reynolds number
being different in each case. This critical value will be determined using linear stability
theory, and its variations as a function of the channel geometry will be sought. Since
the onset of the instability is of interest, the analysis will focus on the amplitudes of
channel divergence–convergence that are just large enough to induce instability. The
global critical Reynolds number, where the flow does not become unstable for
the specified contraction of the channel regardless of its wavelength, is also sought.
The analysis is focused primarily of the low Reynolds numbers where the flow is
expected to be stable with respect to travelling waves and the centrifugal effect offers
the most plausible mechanism for flow modification. Such conditions are of primary
interest in the design of heat exchangers.
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Figure 1. Sketch of the flow domain. The computational domain is contained between
y = −1 − 2S and y = 1 + 2S.

The paper is organized as follows. Section 2 describes the form of the flow in a
diverging–converging channel. Section 3 describes the linear stability analysis of this
flow. Results of the analysis are discussed in § 4. Section 5 provides a short summary
of the main conclusions.

2. Flow in a diverging–converging channel
The section is devoted to the determination of the form of the basic state, i.e. the

form of a two-dimensional, steady flow in a diverging–converging channel. There are
infinitely many possible variations of geometry of a diverging–converging channel.
In order to focus our analysis, we shall consider the simplest reference case, i.e. a
channel whose walls are described by simple sine functions, as shown in figure 1. More
complex channels can be described by a superposition of such functions, resulting in
a geometry described by a Fourier expansion. The present channel can be viewed as
representing the first term of such an expansion. Accordingly, the shapes of the upper
and lower walls, yU (x) and yL(x), are given as (see figure 1)

yU (x) = 1 + (−Seiαx + c.c.),

yL(x) = −1 + (Seiαx + c.c.),

}
(2.1)

where S is real and denotes the amplitude of the wall corrugation, α is real and stands
for the wavenumber of the corrugation and c.c. stands for the complex conjugate.
The flow domain is bounded by −∞ < x < ∞, (−1 − 2S) � y � (1 + 2S). The change
in the channel opening owing to its divergence–convergence, from the largest opening
to the smallest, is 8S.

The goal of this analysis is the establishment of the critical conditions leading to the
onset of the instability. Our interest is therefore in the determination of the smallest
change in the channel opening that results in the generation of a secondary motion.
The problem of description of the basic state, i.e. flow in a channel shown in figure 1,
can thus be posed as a problem of determination of the modifications to the flow in a
straight channel occurring due to the addition of the channel divergence–convergence.

Consider plane Poiseuille flow confined between flat rigid walls at y = ±1 and
extending to ±∞ in the x-direction (figure 1). The fluid motion is described by the
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velocity and pressure fields in the form

V 0(x) = [u0(x, y), v0(x, y)] = [u0(y), 0] = [1 − y2, 0], p0(x) = −2x/Re, (2.2)

where the fluid is directed towards the positive x-axis and the Reynolds number Re
is defined on the basis of the maximum x-velocity and the half-channel height.

Flow in the diverging–converging channel can be represented as

V (x) = [u(x, y), v(x, y)] = V 0(x) + V 1(x) = [u0(y), 0] + [u1(x, y), v1(x, y)],

p(x) = p0(x) + p1(x),
(2.3)

where V 1 and p1 are the velocity and pressure modifications due to the channel
divergence–convergence. Substitution of the above representation of the flow quanti-
ties into the Navier–Stokes and continuity equations, introduction of stream function
defined as u1 = ∂yΨ , v1 = −∂xΨ , and elimination of pressure permit expression of
the field equations in the form

(u0∂x + ∂yΨ ∂x − ∂xΨ ∂y) ∇2Ψ − D2u0∂xΨ =
1

Re
∇4Ψ, (2.4)

where D = d/dy. Since u1 and v1 are periodic in x with the period λ = 2π/α, the
stream function can be represented as

Ψ (x, y) =

n=+∞∑
n=−∞

Φn(y) einαx (2.5)

where Φn = Φ∗
−n and asterisk denotes complex conjugate. In general, we cannot

exclude the possibility of the existence of subharmonics in the velocity field. Their
presence, however, can be accounted for by a simple change of indices in (2.5). No
subharmonics were found in the parameter range subject to this investigation.

The functions Φn, n � 0, in (2.5) are governed by a nonlinear system of ordinary
differential equations in the form

[
D2

n − inαRe(u0Dn − D2u0)
]
Φn − iαRe

k=+∞∑
k = −∞

[k DΦn−kDkΦk − (n − k)Φn−kDkDΦk] = 0,

(2.6)

where Dn = D2 − n2α2. Equation (2.6) was obtained through substitution of (2.5) into
(2.4) and separation Fourier components.

The boundary conditions at the channel walls are expressed in the following form

u0(yU (x)) + u1(x, yU (x)) = 0, v1(x, yU (x)) = 0, (2.7a)

u0(yL(x)) + u1(x, yL(x)) = 0, v1(x, yL(x)) = 0. (2.7b)

Specifying one additional condition closes the problem formulation. This condition
arises because an x-periodic velocity field may be associated with a pressure field
that has a component linear in x. Note that introduction of the channel divergence–
convergence increases resistance to the flow as compared to a straight channel. Thus,
if the flow is driven by the same mean pressure gradient, the volume flux has to
decrease. Alternatively, if we want to maintain the same volume flux, the mean
pressure gradient must increase. The additional condition can be cast either in terms
of the volume flux or in terms of the pressure gradient. Both types of constraint have
been investigated in this analysis.
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The fixed mass condition involves only kinematic characteristics of the flow and
can be conveniently cast in terms of streamfunction in the form

Ψ0(yL(x)) + Ψ (x, yL(x)) = 0, (2.8)

Ψ0(yU (x)) + Ψ (x, yU (x)) = 4
3
, (2.9)

where Ψ0 = − 1
3
y3 + y + 2

3
denotes the streamfunction of the Poiseuille flow (continued

analytically in −1 − 2S < y < 1 + 2S). Condition (2.8) is associated with the use of
the streamfunction and has been selected arbitrarily.

The determination of the fixed pressure condition requires explicit writing of an
equation for Φ0. This equation is obtained from (2.6) with n= 0 and, after some
rearrangements, it takes the form

D4Φ0 + 2αRe Im

[
k=+∞∑
k=1

kD2(Φ∗
k DΦk)

]
= 0, (2.10)

where Im denotes the imaginary part. Single integration of (2.10) gives

D3Φ0 + 2αRe Im

[
k=+∞∑
k=1

kD(Φ∗
0dΦk)

]
= A Re. (2.11)

It can be shown that the constant of integration A describes the mean pressure
gradient induced by the channel divergence–convergence, i.e.

∂p1/∂x|n=0 = A. (2.12)

This is done by taking the x-momentum equation, substituting (2.3) and (2.5),
extracting from the pressure field mode corresponding to n= 0 and rearranging
the resulting expression.

The condition expressing the fixed pressure gradient constraint is expressed by (2.11)
with A =0. This condition can be enforced at any value of y inside the flow domain.
Equation (2.8) remains as an arbitrary condition associated with the introduction of
the streamfunction.

2.1. Numerical solution

The problem to be solved numerically consists of an infinite system of nonlinear
ordinary differential equations, (2.6), subject to boundary conditions (2.7)–(2.8) and
either constraint (2.9) or (2.11). Since the flow domain is limited in the y-direction
by two lines that are functions of x, the computational domain is regularized by
extending it to y ∈ 〈−1 − 2S, 1 + 2S〉.

The representation of the streamfunction of the flow modifications Ψ is truncated
to M leading Fourier modes, i.e.

Ψ (x, y) ≈
n=M∑

n=−M

Φn(y)einαx. (2.13)

The corresponding, finite dimensional system of the ordinary differential equations
for the functions Φn, n= 0, 1, . . . , M can be written easily on the basis of (2.6).
This system can be discretized with spectral accuracy by introducing Chebyshev
representations of the unknown function Φn as follows

Φn(y) =

j=∞∑
j=0

Gn
jTj (y) ≈

j=K∑
j=0

Gn
jTj (y), (2.14)
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where Tj denotes the Chebyshev polynomial of the j th order defined in y ∈ (−1 − 2S,

1 + 2S) and Gn
j stands for the unknown expansion coefficient. The M∗(K − 4) algebraic

equations for Gn
j are obtained through application of the tau technique. The remaining

4M equations are to be obtained from the flow boundary conditions.
Implementation of boundary conditions relies on the concept of immersed boundary

conditions developed by Szumbarski & Floryan (1999) and will be discussed in the
context of the lower wall. The following presentation is limited to a short outline. We
begin by evaluating velocity components uL(x) = u(x, yL(x)) and vL(x) = v(x, yL(x))
along the lower wall represented by (2.1). Both velocity components uL and vL are
x-periodic and thus can be expressed in terms of Fourier series as

uL(x) ≡ u(x, yL(x)) =

n=M∑
n=−M

(Un)L einαx, vL(x) ≡ v(x, yL(x)) =

n=M∑
n=−M

(Vn)L einαx. (2.15)

The same velocity components can also be expressed using the assumed form of the
solution, i.e.

uL(x) ∼= u0(yL(x)) +

n=M∑
n=−M

DΦn(yL(x))einαx = u0(yL(x)) +

n=M∑
n=−M

j=K∑
j=0

Gn
j DTj (yL(x))einαx

vL(x) ∼= −iα

n=M∑
n=−M

nΦn(yL(x))einαx = −iα

n=M∑
n=−M

j=K∑
j=0

nGn
j Tj (yL(x))einαx. (2.16)

Since values of Chebyshev polynomials evaluated at y = yL(x) are periodic functions
of x, they can be represented as

Tj (yL(x)) =

k=∞∑
k=−∞

(
w

j
k

)
L
eikαx, DTj (yL(x)) =

k=∞∑
k=−∞

(
d

j
k

)
L
eikαx. (2.17)

Insertion of (2.17) into (2.16) and separation of Fourier modes results in the
explicit expressions for coefficients of Fourier expansions (2.15), leading to boundary
conditions (2.7b) in the form

Un = (Fn)L +

m=M∑
m=−M

j=K∑
j=0

(
dj

n−m

)
L
Gm

j = 0, M � n � 0, (2.18a)

Vn = −iα

m=M∑
m=−M

j=K∑
j=0

m
(
wj

n−m

)
L
Gm

j = 0, M � n � 1. (2.18b)

Relations required for evaluation of coefficients (wj
k )L, (dj

k )L are given in Appendix A.
The complex quantities Fn, n = 0, 1, . . . in (2.18) are the Fourier coefficients of the
reference flow u0 evaluated along the channel bottom, i.e.

u0 (yL (x)) =

n=∞∑
n=−∞

(Fn)L einαx. (2.19)

In the present case, the non-zero Fourier coefficients have the form

(F0)L = −2S2, (F1)L = (F−1)L = 2S, (F2)L = (F−2)L = −S2 (2.20)

Since no conditions can be written for V0 (Szumbarski & Floryan 1999),
equations (2.18) give 2M − 1 conditions for Gm

j .
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Figure 2. Streamlines of the flow in a diverging–converging channel subject to the fixed mass
constraint for Re= 1500, α =3, S = 0.02 for two periods in the streamwise direction.

The condition required to specify the value of the streamfunction at the lower wall
can be expressed as

s=M∑
s=−M

j=K∑
j=0

Gs
j

(
wj

s

)∗
L

= −(H0)L, (2.21)

where (Hn)L stands for the coefficients of Fourier expansion of the streamfunction Ψ0

of the reference flow, i.e.

Ψ0(yL(x)) ≈
n=M∑

n=−M

(Hn)Leinαx. (2.22)

Conditions at the upper wall can be expressed in a similar manner. Pressure condition
(2.11) can be expressed at any value of y that does not cross the walls using standard
procedures.

The system of nonlinear algebraic equations resulting from the discretization process
is solved using an iterative method described by Szumbarski & Floryan (1999).

The method described above is very convenient for the analysis of the effect of
variations of channel geometry as the changes in the form of the geometry are reduced
to changes of the numerical values of Fourier coefficients only.

2.2. Flow description

Streamlines of the flow for parameter values of interest in this analysis, i.e. Re = 1500,
α = 3, S = 0.02, are displayed in figure 2. Nonlinear effects create a slight asymmetry
of the flow on the upstream and downstream sides of the largest channel constriction.
The flow is expected to separate on the downstream side for large enough constriction.
Such separation did not occur for parameter values considered in this analysis.

The streamline pattern demonstrates that presence of channel divergence–
convergence results in changes in the flow direction. The magnitude of these changes
and the magnitude of the resulting centrifugal forces can be determined by studying
the distribution of streamline curvature. The curvature K can be evaluated according
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Figure 3. Properties of the flow in a diverging–converging channel for Re= 1500, α = 3,
S = 0.02. (a) Streamline curvature, (b) circulation, (c) additional vorticity associated with flow
divergence–convergence (i.e. difference between the total vorticity and the vorticity of the
Poiseuille flow). The shaded area denotes the sector in the flow field where the Rayleigh
criterion is violated.

to the formula

K =

(
u2

1

∂v1

∂x
− v2

1

∂u1

∂y
− 2v1u1

∂u1

∂x

)/(
v2

1 + u2
1

)3/2
, (2.23)

and its distribution is illustrated in figure 3(a) for two periods in the streamwise
direction. The curvature is negative in the lower half of the channel over approximately
the first half period, and positive over the second half; the curvature is opposite in
the upper half of the channel.

Potential for instability driven by the centrifugal effect is expressed in terms of the
Rayleigh criterion (Rayleigh 1920; Drazin & Reid 1981) that states that a necessary
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and sufficient condition for stability is that the square of circulation should not
decrease anywhere. This criterion had been derived in the case of flow between
circular cylinders using a polar system of coordinates where the positive direction is
uniquely defined. In the present case, the flow is described in terms of a Cartesian
system and thus the positive direction corresponds to increasing y in the area where
the curvature is negative, and decreasing y in the area where the curvature is positive.
The circulation Γ can be evaluated according to the formula

Γ = (|v̄|/K) =
(
v2

1 + u2
1

)2

/(
u2

1

∂v1

∂x
− v2

1

∂u1

∂y
− 2v1u1

∂u1

∂x

)
(2.24)

and its distribution is illustrated in figure 3(b). The shaded area denotes the flow
sector where the Rayleigh criterion is violated. Figure 3(c) illustrates distribution of
additional vorticity in the base flow that is created owing to the presence of the
channel divergence–convergence. This additional vorticity is defined as the difference
between the total vorticity and the vorticity associated with the Poiseuille flow.

3. Linear stability analysis
The analysis begins with the governing equations in the form of vorticity transport

and continuity equations in the form

∂ω

∂t
− (ω · ∇)v + (v · ∇)ω =

1

Re
∇2ω, ∇ · v = 0, ω = ∇ × v, (3.1a–c)

and generalizes the analysis given by Floryan (1997). Unsteady, three-dimensional
disturbances are superimposed on the mean part in the form

ω = ω2(x, y) + ω3(x, y, z, t), v = v2(x, y) + v3(x, y, z, t), (3.2)

where subscripts 2 and 3 refer to the mean flow and the disturbance field, respectively.
The assumed form, (3.2), of the flow is substituted into (3.1), the mean part is
subtracted and the equations are linearized. The resulting linear disturbance equations
have the form

∂ω3

∂t
+ (v2 · ∇)ω3 − (ω3 · ∇)v2 + (v3 · ∇)ω2 − (ω2 · ∇)v3 =

1

Re
∇2ω3, (3.3a)

∇ · v3 = 0, ω3 = ∇ × v3. (3.3b,c)

The mean flow is assumed to have the form

v2(x, y) = [u0(y), 0, 0] +

n=∞∑
n=−∞

[
f (n)

u (y), f (n)
v (y), 0

]
exp(inαx), (3.4)

where f (n)
u , f (n)

v represent the solution to the problem (2.6)–(2.8) and f (n)
u = (f (−n)

u )∗,
f (n)

v = (f (−n)
v )∗.

The disturbance equations, (3.3), have coefficients that are functions of x and y

only and thus the solution can be written in the form

v3 (x, y, z, t) = h3(x, y)ei(µz−σ t) + c.c., (3.5a)

where

h3(x, y) = [hu(x, y), hv(x, y), ihw(x, y)]. (3.5b)



Vortex instability in a diverging–converging channel 27

Since our interest is in disturbances in the form of streamwise vortices, the x and y

components of h3 are real, while the z-component is imaginary. The exponent µ is
real and accounts for the spanwise periodicity of the vortices. The imaginary part of
the exponent σ describes the rate of growth of the vortices. The exponent σ is purely
imaginary in the case of stationary vortices. Only such vortices have been found in
the present study.

Since the coefficients in (3.3) are periodic in x with periodicity 2π/α, h3 is written,
following the Floquet theory (Coddington & Levinson 1965), as

h3(x, y) = eiδx g3(x, y) = eiδx

m=+∞∑
m=−∞

G(m)(y)eimαx, (3.6)

where g3 is periodic in x with the same periodicity 2π/α and δ is referred to as the
Floquet exponent. The Floquet exponent can be assumed to be δ = 0 without loss of
generality as the vortex disturbance must always retain a component that is constant
in the x-direction. The final form of the disturbance velocity vector is written as

v3(x, y, z, t) =

m=+∞∑
m=−∞

[
g(m)

u (y), g(m)
v (y), g(m)

w (y)
]
ei(mαx+µz−σ t) + c.c., (3.7)

where g(m)
u = g(−m)∗

u , g(m)
v = g(−m)∗

v , g(m)
w = −g(−m)∗

w and the asterisk denotes complex
conjugate. Substitution of (3.4) and (3.7) into the disturbance equations, (3.3), and
separation of Fourier components result in a system of ordinary differential equations
governing g(m)

u , g(m)
v , g(m)

w in the form

S(m)
(
tmg(m)

w − µg(m)
u

)
+ Cg(m)

v = iRe

n=∞∑
n=−∞

(
W(m,n)

u g(m−n)
u + W(m,n)

v g(m−n)
v + W(m,n)

w g(m−n)
w

)
,

(3.8a)

T(m)g(m)
v = −Re

n=∞∑
n=−∞

(
B(m,n)

u g(m−n)
u + B(m,n)

v g(m−n)
v + B(m,n)

w g(m−n)
w

)
, (3.8b)

itmg(m)
u + Dg(m)

v + i µg(m)
w = 0, (3.8c)

where tm = mα and the explicit forms of the operators T, S, C, W, B are given in
Appendix B. Equation (3.8a) describes the y-component of disturbance vorticity, (3.8b)
corresponds to iµ × (x-component of vorticity) − itm × (z-component of vorticity),
and (3.8c) results from the continuity equation. It is convenient for analysis purposes
to express the above relations in terms of the y-components of disturbance vorticity
θ (m) = tmg(m)

w − µg(m)
u and disturbance velocity g(m)

v , i.e.

S(m)θ (m) + Cg(m)
v = Re

n=∞∑
n=−∞

(
E(m,n)

v g(m−n)
v + E(m,n)

θ θ (m−n)
)
, (3.9a)

T(m)g(m)
v = −Re

n=∞∑
n=−∞

(
H(m,n)

v g(m−n)
v + H(m,n)

θ θ (m−n)
)

(3.9b)

where the explicit forms of the operators E and H are given in Appendix B.
Equations (3.9) supplemented by homogeneous boundary conditions at y = yU (x)

and y = yL(x) have non-trivial solutions only for certain combinations of parameters
σ and µ. The required dispersion relation must be determined numerically. For the
purposes of calculation, the problem is posed as an eigenvalue problem for σ .
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Effects of channel divergence–convergence are contained in the terms on the right-
hand side of (3.9) and in the boundary conditions. In the limit S → 0 (absence of
channel divergence–convergence), the right-hand sides in (3.9) become zero, all modes
in the Fourier series (3.7) decouple and (3.9) describes stationary modes of the classical
three-dimensional instability (see Appendix C). The analytical solution describing the
streamwise vortex (m = 0) is given in Appendix C. The coupling due to the channel
divergence–convergence involves 2N + 1 consecutive terms from the Fourier series,
where N describes the actual length of the Fourier series in (3.4). In analogy to
stability of flow in a straight channel, we shall refer to the T, S and C operators as the
Tollmien–Schlichting, Squire and coupling operators, respectively. Operators E and
H arise because of the presence of channel divergence–convergence. Since the wall
corrugation can be viewed as flow forcing, we shall refer to these operators as the
forcing operators. Eθ and Hv describe direct forcing and Ev and Hθ describe coupling
due to the forcing.

The boundary conditions at the walls represent another set of coupling and
forcing operators arising because of the presence of channel divergence–convergence.
Although the form of these operators cannot be given explicitly in general, it is
possible to construct an explicit form of the equivalent linear algebraic operators
resulting from the numerical discretization procedure. This process is described in the
next section.

3.1. Numerical solution

The problem to be solved consists of an infinite system of ordinary differential
equations, (3.9), with homogeneous boundary conditions. Approximate solutions can
be found by truncating the sum in (3.7) after a finite number L of terms and solving
the eigenvalue problem for L + 1 differential equations of type (3.9).

The differential equations were discretized using a method similar to that described
in § 2.1. Boundary conditions at the upper an lower walls were implemented using
the immersed boundary conditions concept described in § 2.1. The discretization
procedure results in a matrix eigenvalue problem Ωx = 0 where Ω(σ ) represents the
coefficient matrix. This matrix is linear in σ , i.e. Ω = Ω0 + Ω1σ , where Ω0 = Ω(0),
Ω1 = Ω(1) − Ω0. The σ -spectrum is determined by solving a general eigenvalue
problem in the form Ω0x = σΩ1x. The individual eigenvalues are determined by
finding zeros of the determinant of Ω .

Two methods for the tracing of eigenvalues in the parameter space have been used.
In the first method, we alter flow conditions and produce an approximation for the
eigenvalue which is then improved iteratively by searching for the near-by zero of
the determinant using a Newton–Raphson search procedure. In the second method,
the inverse iterations method, we compute an approximation for the eigenvector
Λa corresponding to the unknown eigenvalue σa using an iterative process in the
form (Ω0 − σ0Ω1)Λ

(n+1) = Ω1Λ
(n) where σ0 and Λ(0) are the eigenvalue and the

eigenvector (an eigenpair) corresponding to the unaltered flow. If σa is the eigenvalue
closest to σ0, Λ(n) converges to Λa . The eigenvalue σa is evaluated using formula
σa = Λ∗

aΩ0Λa/Λ
∗
aΩ1Λa where asterisk denotes the complex conjugate transpose. The

inverse iterations method was found to be generally more efficient.
Results of numerical tests presented in table 1 assist in identifying the correct values

of various numerical parameters to be used in the computations. The eigenvalues can
be determined with accuracy no worse then three digits using K = 59 Chebyshev
polynomials, M = 5 Fourier modes to represent the mean flow and L = 5 Fourier
modes to represent the disturbances.
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(a) Number of Number of mean Number of Fourier modes used in the mean
Fourier modes flow Fourier modes flow solution

used to represent retained in the
disturbances stability equations 3 5 7

3 3 0.173433 0.169721 0.169552
5 3 0.171937 0.168074 0.167918

5 0.168147 0.167980
7 3 0.171984 0.168132 0.167974

5 0.168151 0.167982
7 0.167984

(b) Number of
Chebyshev
polynomials 39 49 59 69 79

Im(σ ) × 103 0.167942 0.167963 0.167983 0.167984 0.167984

Table 1. Disturbance amplification rate (a) Im(σ ) × 103, (b) Im(σ ) for the corrugation
amplitude S =0.02, the corrugation wavenumber α = 3, the flow Reynolds number Re =1500,
the vortex wavenumber µ= 2, the first instability mode and the flow subject to the fixed mass
constraint obtained using (a) K = 79 Chebyshev polynomials and (b) M = L = 7 Fourier modes
to represent the mean flow and the disturbance field.

4. Discussion of results
It is convenient to begin discussion with a brief summary of stability properties of

flow in a straight channel. Such flow becomes unstable with respect to two-dimensional
waves (Tollmien–Schlichting waves) travelling in the downstream direction at the
flow Reynolds number Re = 5772. The instability has a subcritical character and an
increase of the level of disturbances can reduce the critical Reynolds number down
to Re ≈ 2700 (Herbert 1977). Stable, two-dimensional waves of sufficient amplitude
can produce three-dimensional instability that can give rise to streamwise vortices at
Re as low as 1000 (Orszag & Patera 1983); this process is referred to as secondary
instability and is attributed to parametric resonance.

The flow in a diverging–converging channel is expected to be subject to the travelling
wave instability. The change of the corresponding critical Reynolds number as a func-
tion of the channel geometry is yet to be studied. The same flow can also be subject to
an instability driven by the centrifugal effects that, under certain conditions, may give
rise to the amplification of disturbances in the form of streamwise vortices. The present
analysis is focused on the centrifugal effect. The flows of interest are characterized by
rather small Reynolds numbers where the travelling waves are expected to be linearly
stable or, at least, the centrifugal instability is expected to be dominant.

The form of the flow in a diverging–converging channel and its stability
characteristics depend on whether the flow is allowed to develop with the same
mass flux as the reference flow in a straight channel, or whether it is driven by the
same pressure gradient. The following discussion deals with the case of a flow with a
fixed mass flux unless explicitly noted otherwise.

The instability that results in the formation of streamwise vortices occurs for
sufficiently high Reynolds numbers if the channel geometry satisfies certain conditions.
This analysis has been carried out in the context of a reference diverging–converging
channel whose walls are described by the sine functions, with the amplitude S and
the wavelength α/2π being the only geometric parameters. The vortices that are
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Figure 4. Amplification rates Im(σ ) of disturbances in the form of streamwise vortices induced
in a flow with Reynolds number Re =1500 subject to the fixed mass flux constraint as a function
of the wall wavenumber α and the vortex wavenumber µ for the amplitude of the channel
divergence–convergence S = 0.02. ——, First, and – – –, second instability mode.

amplified are fixed with respect to the wall, i.e. Re(σ ) = 0, and are modulated in the
streamwise direction with the same periodicity as the channel, i.e. the wavelength of
the modulation is α/2π. Two modes of the instability have been identified for the
range of flow Reynolds numbers considered. The amplification rates Im(σ ) for both
modes are illustrated in figure 4 for the flow Reynolds number Re = 1500 and the
amplitude of the channel divergence–convergence S = 0.02. The more unstable mode
will be referred to as the first mode. It can be seen that the range of the active wall
wavenumbers for the first mode extends from α ≈ 1 to α ≈ 5.5. The term ‘active’ refers
here to the wall wavenumbers that give rise to the instability at this particular value
of the flow Reynolds number and the wall amplitude. Each active wall wavenumber
gives rise to a band of vortices whose wavelength is bounded from above and
below. The amplified vortex wavenumbers corresponding to the first mode are always
contained in the interval ∼1 <µ< ∼3.5 at this particular value of Re (see figure 4),
but the vortices that are actually amplified are contained in a smaller subinterval
whose length and location change as a function of the wall wavenumber. The second
mode is more stable in the sense that the range of the active wall wavenumbers is
smaller, the band of the resulting vortices is narrower and the amplifications rates
are smaller as compared to those corresponding to the first mode. It will be shown
later in the discussion that this mode is associated with the disturbance velocity
field characterized by higher velocity gradients; the associated higher dissipation

Figure 5. Eigenfunctions g
(m)
u , g(m)

v , g(m)
w , m= 0, 1, 2, describing vortex corresponding to the first

instability mode with the wavenumber µ= 2 induced by the channel divergence–convergence
with the wall wavenumber α = 3 and the amplitude S = 0.02 for the flow Reynolds number

Re= 1500 and normalized with condition maxy∈(0,1+2S)(g
(0)
u ) = 1. (a) g

(m)
u , (b) g(m)

v , (c) g(m)
w . The

flow is subject to the fixed mass constraint. Subscripts r and i denote real and imaginary
parts.



Vortex instability in a diverging–converging channel 31

1.0

0.5

0

–0.5

–1.0

gu
(0)

(a)

–1 0 1

0.2

0.1

0

–0.1

–0.2

g
u
(2)

gu, r
(1)

g
u, r
(2)

g
u, r
(0)

gu, i
(2) × 5

g
u, i
(1) × 5

0.04

0.02

0

–0.02

–0.04

gv

(b)

–1 0 1

g
v, i
(1)

g
v, i
(2)

g
v, r
(0)

0.04

0.02

0

–0.02

–0.04

gw, i

(c)

–1 0 1

0.012

0.008

0.004

0

–0.004

–0.008

–0.012

gw, r

g
w, r
(1)

g
w, i
(0)

g
v, r
(2)

g
v, r
(1)

g
w, i
(1)

g
w, r
(2)

g
w, i
(2)

Y

g
u
(1)

Figure 5. See facing page for caption.
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is responsible for the relative stabilization of this mode. We shall now discuss
properties of both modes as they result in qualitatively different disturbance velocity
fields.

Figure 5 illustrates the first three eigenfunctions corresponding to the first mode
of the instability. The dominant character of g(0)

u , which is a characteristic feature
of the vortices, is clearly visible. Because g(0)

u is antisymmetric, we could refer to
this mode as antisymmetric. The shape of g(0)

v (figure 5b) suggests existence of single
layer of vortices occupying most of the channel opening. The eigenfunctions shown
are normalized with the maximum of g(0)

u in the upper half of the channel, i.e.
maxy∈(0,1+2S)(g

(0)
u ) = 1. Note that, because of symmetries, the maximum of g(0)

u in the
upper half of the channel is equal to the minimum of g(0)

u in the lower half. Use of
the maximum of g(0)

u in the lower half for normalization purposes would result in the
vortices displayed rotating in the opposite direction.

The topology of the disturbance velocity field is complex and is illustrated in
figure 6 using the velocity ‘amplitude function’ h3(x, y) (see (3.5)). Whereas most of
the channel is ‘filled in’ with a single layer of vortices, there are thin layers attached
to each of the walls where a significant flow readjustment in the streamwise direction
takes place, as indicated by the zero of the normal- and spanwise-velocity-component
‘amplitude functions’ hv and hw (figure 6b, c). The streamwise changes in the structure
of the disturbance velocity field are illustrated in figure 7 which displays spanwise
cuts through the disturbance velocity field starting at x = 0 every 1/8λ, where λ =
2π/α denotes the length of the period. The vertical extent of the central vortex
changes with channel opening; the vortex appears to be ‘round’ where the channel
is narrowest (figure 7a) becomes elongated in the vertical direction as the channel
diverges (figure 7b–d) and returns to its original ‘round’ shape as the channel converges
(figure 7e–h). The size of the vortex appears to be dictated indirectly by the size of
channel opening through the changes in the thickness of the readjustment layers at
both walls.

The inner structure of the readjustment layers is illustrated in figure 8, which
displays enlargement of the flow shown in figure 7 in the area near the upper wall.
There are qualitative differences in the form of these layers in the diverging and
converging sections of the channel, with a complex evolution in the diverging section
and a rather simple form in the converging section. We shall start this discussion with
the diverging section using the nomenclature of the critical point theory (Perry &
Fairlie 1974). Note the existence of a second vortex near the wall at x = 0 (figure 8a).
The thickness of the layer where the flow moves in the direction opposite to that
dictated by the central vortex increases as channel diverges (figure 8b) with the second
vortex disappearing and being replaced by a saddle. This process continues at x = 1

4
λ

(figure 8c) and x = 3
8
λ (figure 8d). At x = 1

2
λ (largest channel opening) the flow near

the wall changes direction, resulting in the formation of another secondary vortex
above the saddle (figure 8e). The secondary vortex and the saddle disappear at x = 5

8
λ

(figure 8f ) and the structure of the flow remains approximately unchanged further
downstream at x = 3

4
λ and x = 7

8
λ (figure 8g, h).

The differences between the diverging and converging sections of the channel are
shown in figure 9 which displays a modified disturbance velocity field in the (x, y)-
plane at z = 0. The modification involves elimination of the zero mode from the
u velocity component, i.e. elimination of g(0)

u . This component is by an order of
magnitude larger then others (see figure 5) and thus conceals streamwise modulation
of the disturbance velocity field. The flow modulation has a simple form. As the
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Figure 6. Velocity ‘amplitude function’ h3(x, y) = [hu(x, y), hv(x, y), ihw(x, y)] (see
equation (3.5)) corresponding to the first instability mode for Re= 1500, α = 3, µ= 2,
S = 0.02 normalized with condition maxy∈(0,1+2S)(g

(0)
u ) = 1. (a) hu, (b) hv , (c) hw . The flow is

subject to the fixed mass constraint.
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Figure 7. Distribution of the (y, z)-component of the disturbance velocity vector for
z ∈ (0, 2π/µ), µ= 2, α = 3, Re= 1500, S = 0.02 for the first instability mode. The disturbance
velocity vector is normalized with condition maxy∈(0,1+2S)(g

(0)
u ) = 1. (a) x = 0, (b) 1

8
λ, (c) 1

4
λ,

(d) 3
8
λ, (e) 1

2
λ, (f ) 5

8
λ, (g) 3

4
λ, (h) 7

8
λ, where λ= 2π/α denotes one wavelength of the wall

divergence–convergence.

mean flow approaches the converging section, it is forced to change direction owing
to the blocking effect of the wall; the resulting instability drives the flow in the
spanwise direction resulting in the formation of a stable node (sink) close to the
upper wall and an unstable node (source) close to the lower wall. This structure of
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Figure 9. Distribution of the (x, y)-component of the modified disturbance velocity vector
for x ∈ (0, 2π/α) at z = 0 for the first instability mode. The remaining conditions are the same
as in figure 7. The modification involves elimination of the zero mode from the u velocity

component, i.e. elimination of g
(0)
u .

the disturbance velocity field points towards the centrifugal-effect-driven origin of the
instability.

The topology of the velocity disturbance field associated with the second mode is
somewhat different. Figure 10 illustrates the first three eigenfunctions. The dominant
character of g(0)

u is clearly visible. Because g(0)
u is symmetric, we could refer to this

mode as symmetric. The shape of g(0)
v (figure 10b) suggests the existence of two layers

of vortices in the central section of the channel cross-section. The eigenfunctions
shown are normalized with the maximum of g(0)

u in the upper half of the channel,
i.e. maxy∈(0,1+2S)(g

(0)
u ) = 1. Because of symmetries, the maximum of g(0)

u in the upper
half is equal to the maximum of g(0)

u in the lower half and thus use of any of them
for normalization purposes does not effect the direction of rotation of the vortices
shown.

The topology of the disturbance velocity field associated with the second mode
is illustrated in figure 11 using the velocity ‘amplitude function’ h3(x, y) (see (3.5)).
The channel is ‘filled in’ with two layers of vortices and thin readjustment layers
attached to each of the walls (figure 11b,c). The streamwise changes in the structure
of the disturbance velocity field are illustrated in figure 12 which displays spanwise
cuts through the disturbance velocity field starting at x = 0 every 1/8λ. The vertical
extent of the central vortices changes with channel opening; their size is dictated
indirectly by the size of channel opening through the changes in the thickness of
the readjustment layers at both walls, as in the case of the first mode discussed
earlier. There are qualitative differences in the form of the ‘adjustments’ layers in
the diverging and converging sections of the channel, with a complex evolution in
the diverging section (see figure 12b–d) and a rather simple form in the converging
section (see figure 12f–h). The central vortices appear to almost disappear at x = 3λ/8
(figure 12d). Figure 13 displays a modified disturbance velocity field (i.e. without g(0)

u )
in the (x,y)-plane at z = 0. It can be seen that the streamwise modulation of the
disturbance velocity field results in the formation of stable nodes (sinks) close to the
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Figure 10. Eigenfunctions g
(m)
u , g(m)

v , g(m)
w , m= 0, 1, 2, corresponding to the second instability

mode. The remaining conditions are as in figure 5.
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Figure 11. Velocity ‘amplitude function’ h3(x, y) = [hu(x, y), hv(x, y), ihw(x, y)] (see
equation (3.5)) corresponding to the second instability mode. The remaining conditions are as
in figure 5.
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Figure 12. Distribution of the (y, z)-component of the disturbance velocity vector for
z ∈ (0, 2π/µ), µ= 2, α = 3, Re = 1500, S = 0.02 for the second instability mode. The remaining
conditions are as in figure 7.

upper and lower walls, although the structure of the velocity field in the immediate
neighbourhood of these nodes is more complex than in the case of the first mode.
These nodes are located in the converging section of the channel.

Figure 14 illustrates changes of the vortex amplification rate as a function of the
amplitude S of the channel divergence–convergence for both instability modes in the
limit as S → 0. This limit permits identification of additional differences between
both modes. The distinct limit S = 0 for the first mode corresponds to the Squire
mode and can be determined analytically, i.e. σ = −i(µ2 + 1

4
π2)/Re (see Appendix C).

The same limit for the second mode corresponds to the Tollmien–Schlichting mode
and can also be determined analytically, i.e. σ = −i(s2 + µ2)/Re where s stands for
the smallest positive root of s sin(s) cosh(µ) + µ sinh(µ) cos(s) = 0 (see Appendix C).
These results demonstrate that the first instability mode is connected to the Squire
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Figure 13. Distribution of the (x, y)-component of the modified disturbance velocity vector
for x ∈ (0, 2π/α) at z = 0 for the second instability mode. The remaining conditions are the
same as in figure 9.
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is not marked, as it does not affect the limit of S → 0 (see Appendix C). The flow is subject
to the fixed mass constraint.

spectrum in the case of a smooth channel and the second mode is connected to the
Tollmien–Schlichting spectrum.

Evolution of the g(0)
u , g(0)

v , g(0)
w eigenfunctions for both instability modes as a function

of the amplitude S is illustrated in figure 15. Note that disturbances corresponding
to the first mode have no streamwise vorticity when S = 0 (see Appendix C). Such
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vorticity may be viewed as being created by ‘bending’ of the plane vortex sheets
by the channel divergence–convergence. The relevant mechanism is known as the
CL1 mechanism (Leibovich 1983) and was described originally by Craik & Leibovich
(1976) in the context of Langmuir circulation. Since both modes are driven by the
same mechanism, the CL1 mechanism is not likely to play a major role in the current
instability, but can certainly contribute to it.

Figure 16 displays the neutral surfaces in the (α, µ, S) space for Re = 1500
corresponding to both instability modes. The interiors of these surfaces correspond
to the unstable flow conditions. The first mode is always more unstable, as expected,
although the second mode can be induced with a correct combination of initial
conditions. There is a range of parameters where only the first mode becomes
unstable. The shapes of the neutral surfaces show that the range of the active wall
wavenumbers α as well as the range of the resulting unstable vortex wavenumbers
µ increase rapidly with an increase of the amplitude S of the channel divergence–
convergence. Similar results obtained for Re = 5000 and displayed in figure 17
demonstrate that this increase is more rapid for higher values of Re, where it results
in much wider ranges of active α and resulting µ. It can also be seen that the
instability occurs at much smaller amplitudes S when Re is higher.

Figure 18 displays the neutral surfaces in the (α, µ, Re) space for S = 0.008. A
rapid increase of the range of the active wall wavenumbers α and the resulting vortex
wavenumbers µ as Re increases is clearly visible.

The present linear analysis is focused on the determination of the critical stability
conditions only however, it is useful to comment on the expected subsequent evolution
of the flow. One route of inquiry is the nonlinear evolution of the vortices; weak
nonlinear effects could either enhance or suppress the instability. The second route
is associated with the fact that the presence of the vortices leads to a significant
rearrangement and rapid three-dimensionalization of the flow. Uplifting of low
momentum fluid away from the wall leads to the formation of highly distorted
streamwise and spanwise velocity profiles that are subject to very strong secondary
instabilities. Correct modelling of this rearrangement requires inclusion of complete
nonlinear effects (Benmalek & Saric 1994). The experimental evidence available in
the case of Görtler instability (Floryan 1991) suggests that the flow is likely to follow
the latter route and, indeed, the secondary instabilities are expected to have the form
similar to that found in the case of Görtler vortices. Additional complications may
arise owing to the presence of the readjustment layers at both walls, which give rise to
another class of strong shear layers. These layers may induce secondary instabilities
not associated with those driven by the central vortices. This discussion suggests
that the flow evolution past the critical conditions is likely to require fully nonlinear
analysis, with weakly nonlinear models probably unable to capture its salient features.

Since the presence of vortices is a strong harbinger of transition to turbulence, we are
interested in determining the characteristics of the channel geometry and the critical
flow conditions that lead to the onset of the instability. Channel geometry considered
here is completely defined in terms of the amplitude S and wavelength α/2π of the
divergence–convergence pattern. The critical Reynolds number defining the onset of
the instability can be found for each combination of these two parameters. A cut
corresponding to α = const through the neutral surface shown in figure 18 defines
such Reynolds number for this particular α and S = 0.008. A similar cut through the
neutral surface shown in figure 16 determines the amplitude S for which Re = 1500
represents the critical value. It is convenient for presentation of the results to introduce
the global critical Reynolds number Reg,cr that defines the critical conditions for the
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Figure 16. The neutral surfaces describing variation of the neutral stability conditions for the
first and second instability modes for the Reynolds number Re= 1500 as a function of the am-
plitude S and the wavenumber α of the channel divergence–convergence, and the vortex
wavenumber µ. The flow is subject to the fixed mass constraint.

onset of the instability for a given amplitude S of the wall divergence–convergence
regardless of its wavelength. Such global critical conditions, which include the critical
wavelength of the channel geometry αg,cr and the critical wavelength of the resulting
vortex µg,cr , correspond to the tip of the neutral surface shown in figure 18. Variations
of the global critical conditions as a function of the channel divergence–convergence
amplitude S are illustrated in figure 19 for both instability modes. The values of Reg,cr

for the first mode are Reg,cr = 56120, 6697, 2788, 1211 at S = 0.001, 0.005, 0.01, 0.02,
respectively. The values of Reg,cr can be expressed using simple correlation in the
form

ln(Reg,cr ) = −1.2796 ln(S) + 2.048 (4.1)

which provides accuracy no worse then 5% for S < 0.02.
The area below the critical curves in figure 19 defines the range of the amplitudes

S and the flow Reynolds numbers Re under which the flow is stable. The first mode
determines the critical stability conditions, although the second mode can be induced
with a correct selection of the initial conditions if the Reynolds number is high
enough. It is worth noting that the critical wall wavenumber for the second mode is
almost twice as large as for the first mode whereas the wavenumbers of the resulting
vortices are very similar.

The results presented so far have dealt with the stability of a flow that developed
under the fixed mass flux constraint. Note that such flow is associated with a pressure

Figure 15. Evolution of the eigenfunctions (a) g
(0)
u , (b) g(0)

v , (c) g(0)
w , corresponding to the first

and second instability modes as a function of the amplitude S of the channel divergence–
convergence for the wall wavenumber α = 3, the vortex wavenumber µ= 2, and the flow

Reynolds number Re= 1500. Normalization condition maxy∈(0,1+2S)(g
(0)
u ) = 1. The flow is

subject to the fixed mass constraint. Subscripts r and i denote real and imaginary parts.
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Figure 17. The same as in figure 16, but with the Reynolds number Re =5000.
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Figure 18. The neutral surfaces describing variation of the neutral stability conditions for the
first and second instability modes for the amplitude of the channel divergence–convergence
S =0.008 as a function of the flow Reynolds number Re, the wavenumber α of the channel
divergence–convergence and the vortex wavenumber µ. The flow is subject to the fixed mass
constraint. The tips of the neutral surfaces define the global critical conditions (Reg,cr , αg,cr ,
µg,cr ) for both modes.

gradient that is higher than the pressure gradient required to move the fluid at the same
rate through a straight channel. We shall now enquire how the stability characteristics
change when the flow develops with the fixed pressure gradient constraint. We would
expect a decrease of the flow velocity resulting in flow stabilization. Figure 20 shows
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of the amplitude S of the channel divergence–convergence. ——, First, and – – –, second
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Figure 20. Amplification rates Imag(σ ) of disturbances in the form of streamwise vortices
induced in a flow with the Reynolds number Re =1500 subject to the fixed pressure gradient
constraint. The remaining conditions are as in figure 4. ——, First and – – –, second instability
modes.

a stability diagram for both instability modes obtained under the same conditions
as in figure 4 for the flow with fixed pressure gradient. Comparison of the neutral
curves for both types of flow displayed in figure 21 demonstrates the expected
flow stabilization due to the imposition of the fixed pressure gradient constraint
and provides a quantitative measure of this change. The onset of the instability, as
measured by the global critical Reynolds number, takes place under almost the same
conditions for both types of flow as shown in figure 19. The small difference between
Reg,cr increases with an increase of the wall amplitude S, with the flow with the fixed
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Figure 21. Neutral curves describing two modes of centrifugal instability in a flow subject to
——, the fixed mass constraint, and – – –, subject to the fixed pressure gradient constraint.
The remaining conditions are as in figures 4 and 20.

pressure gradient commanding higher values of Reg,cr . The increase of this difference
is due to the progressively higher flow resistance associated with larger variations of
the channel opening.

The final comments relate to the mechanism of the instability. It is argued that the
instability is driven primarily by the centrifugal effect. The indirect evidence pointing
in this direction has been discussed in the paper. We cannot, however, completely
dismiss other possibilities, i.e. CL1 and CL2 mechanisms and parametric resonance.
It is probable that all mechanisms act at the same time, while the evidence available
suggests that the centrifugal effect is the most important.

This discussion is concluded by commenting on the turbulent flow. Presence of the
channel divergence–convergence acts as a source of vorticity at the walls (figure 3c)
and this could lead to an interesting dynamics of the flow. In addition, since the
centrifugal effect is active regardless of the type of the flow, we may expect formation
of streamwise vortices also in turbulent flows, which should affect the form of large
structures.

5. Summary
Linear stability of a flow in a diverging–converging channel has been analysed.

The analysis has been carried out in the context of a reference diverging–converging
channel whose walls are described by simple sine functions. There are two parameters
that completely describe the geometry of the reference diverging–converging channel,
i.e. the amplitude S and the wavelength λ = α/2π. The difference between the
maximum and minimum channel openings is 8S. The flow conditions are defined
using the flow Reynolds number for a reference straight channel whose height
is equal to the average height of the diverging–converging channel. Variations of
channel geometry result in an increased flow resistance as compared to the straight
channel. The flow in a diverging–converging channel may thus be allowed to develop
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with the same mass flux as the flow in the reference straight channel, or with the
same pressure gradient. Both types of flow have been studied.

It has been shown, using linear stability theory, that flow in a divergent–convergent
channel becomes unstable with respect to disturbances in the form of streamwise
vortices. Analysis of the mean flow circulation and the disturbance flow field suggest
that the instability is driven by centrifugal effect. Two modes of instability have been
identified. The first mode (antisymmetric), which is more unstable, gives rise to a single
layer of vortices filling in most of the channel interior. The second mode (symmetric)
gives rise to two layers of vortices. These vortices are indirectly modulated in the
streamwise direction by channel geometry through thin readjustment layers present
at both walls. These layers have complex topology, especially in the diverging section
of the channel.

For each amplitude S of the channel divergence–convergence there is a finite band
of ‘active’ wavelengths α/2π of the channel divergence–convergence that gives rise
to the instability. The instability amplifies streamwise vortices whose size is described
by a continuous band of spanwise wavenumbers µ. The strength of the instability,
as measured by the amplification rate, increases with the increase of the amplitude
S of the channel divergence–convergence as well as with the increase of the flow
Reynolds number Re. The range of the ‘active’ wavenumbers α and the range of the
resulting vortices, as defined by the wavenumber µ, also increase with the increase of
S and Re. Critical flow conditions leading to the onset of the instability can be found
for each combination of S and α. The global critical conditions leading to the onset of
the instability for the given amplitude S regardless of the wavelength of the channel
divergence–convergence have been determined. The global critical Reynolds number
decreases from Re ≈ 55 × 103 for S ≈ 10−3 to Re ≈ 103 for S ≈ 0.02. These results
demonstrate that the centrifugal instability may dominate over the travelling wave
instability at higher values of the amplitude S of the channel divergence–convergence.
The flow that develops with the fixed mass flux constraint is slightly more unstable
when compared with the flow driven by the fixed pressure gradient. This difference
increases with the increase of the amplitude S of the channel divergence–convergence.

This work has been carried out with support of NSERC of Canada, de Havilland
and Canadair. Drs J. Szumbarski and S. Krol wrote one of the codes used in the
computations. The author would like to thank Dr S. Krol and M. Floryan for
assistance in carrying out the required computations.

Appendix A
Coefficients (wj

k )L can be evaluated from the following recurrence relation
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k )L = 0 for k � 1, (w1
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k )L = (Ak)L for k � 1.

Coefficients (dj
k )L can be evaluated from the following recurrence relation
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k )L = 0 for k � 0, (d1

0 )L = 1, (d1
k )L = 0 for k � 1, (d2

0 )L = 4(A0)L and (d2
k )L =

(Ak)L for k � 1.
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Appendix B

S(m) = D2 − k2
m − iRe (tmu0 − σ ) (B 1)
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Appendix C
In the limit of zero waviness amplitude, (3.9) assumes the following form

S(m)θ (m) + Cg(m)
v = 0, (C 1)

T(m)g(m)
v = 0. (C 2)

Each pair of the above equations describes disturbances of periodicity 2π/mα and
2π/µ in the streamwise and spanwise directions, respectively. Equation (C 1) describes
the so-called Squires modes and (C 2) describes the so-called Tollmien–Schlichting
(TS) modes. In the case of streamwise vortices, i.e. m = 0, (C 1)–(C 2) reduce to the
form

(D2 − µ2 + iReσ )g(0)
u − ReDu0g

(0)
v = 0, (C 3)

(D2 − µ2)(D2 − µ2 + iReσ )g(0)
v = 0. (C 4)

The homogeneous part of (C 3) supplemented by the homogeneous boundary
conditions at y = ±1 represents an eigenvalue problem describing Squires modes
which has symmetric and asymmetric families of solutions. All symmetric solutions
are attenuated and have the form

g(0)
u = c1 cos

[(
1
2
π + nπ

)
y
]
, g(0)

v = g(0)
w = 0, σ = −i

[
µ2 +

(
1
2
π + nπ

)2]/
Re, (C 5)

where c1 is an arbitrary constant. The least attenuated solution corresponds to n=0.
All asymmetric solutions are also attenuated and have the form

g(0)
u = c2 sin(nπy), σ = −i(µ2 + n2π2)/Re, (C 6)

where c2 is an arbitrary constant. The least attenuated solution corresponds to n = 1.
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Equation (C 4) supplemented by homogeneous boundary conditions represents an
eigenvalue problem describing TS modes. The symmetric solutions, which are all
attenuated, have the form

g(0)
v = c1

[
cos(sy) − cos(s)

cosh(µ)
cosh(µy)

]
, σ = −i(s2 + µ2)/Re, (C 7)

where s is a root of s sin(s) cosh(µ) + µsinh(µ) cos(s) = 0 and c1 is an arbitrary
constant. The smallest positive roots that lead to the least stable solution have
numerical values equal to 2.4809, 2.3271 for µ = 2, 2.5, respectively. The asymmetric
solutions have the form

g(0)
v = c2

[
sin(sy) − sin(s)

sinh(µ)
sinh(µy)

]
, σ = −i(s2 + µ2)/Re, (C 8)

where s is a root of sinh(µ)s cos(s) − µcosh(µ) sin(s) = 0 and c2 is an arbitrary
constant. The smallest positive roots that lead to the least stable solutions have
numerical values equal to 4.2591, 4.1659 for µ = 2, 2.5, respectively.
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